. |
’ CURFE —S0e2ae - -

‘LA-UR -0 -\S 942

TITLE:  pERCENTILE ESTIMATION USING THE NORMAL AND LOGNORMAL
PROBARILITY DISTRIBUTION

AUTHOR(S): Thomas R. Bement

MASTER

SUBMITTED TO: American Statistical Meeting

DISCLAIMER

BURIEE N BN L)

ia

By acceptance of thus article, the pubhisher tecogmzes that the
U.S. Governiment rataing a nonexclusive, royalty free hoense
to put ish or reproduce the pubhished form of gy cantnbu
ton, or 10 allow othets 1o do so, for U.S. Government put
posas

ty of Californ

The Los Alamos Sciontific Laboratory requests that the puh
hsher adentity this articl - ay work pettormed under the pus
mees of the U8 Departiwnt of Energy

iversi

c
>

LOS ALAMOS SCIENTIFIC LABORATORY

Post Otffice Box 1663 Los Alamos, New Maxico 87545
An Affirmative Action/Equal Opportunity Ernployer

Form No. 638 R3 UNITFD BTATFY

8t. No. 2629 DEPARTMENT O ENFMUGY
12778 CONTRACT W-JAOR-FNG 3p


About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov


PERCENTILE ESTIMATION USING THE NORMAL AND LOGNORMAL
PROBABILITY DISTRIBUTION

by

Thomas R. Bement
Los Alamus Scientific Laporatory

ABSTRACT

Implicitly or explicitly percentile estimation is an
important aspect of the analysis of aerial radiometric
survey data. Standard deviation maps are produced for
quadrangles which are surveyed as part of the National
Uranium Resource Evaluation. These maps show where varla-
bles differ from their mean values by more than oune, two
or three standard deviations. Data may or may not be
log-transformed prior to analysis. These maps have speci-
fic percentile interpretations only when proper distribu-
tional assumptions are met. Monte Carlo results are pre-
sented in this paper which show the consequences of esti-
mating percentiles by i) assuming normality when the data
are really from a lognormal distribution, and ii) assuming
lognormality when the data are really from a normal dis-
tribution.

INTRODUCTION

Many types of investigations in geology and other disciplinmes are related
to the problem of percentile estimation. The problem that motivated this
study is the interpretation of aerial radiometric data being collected by the
U.S. Department of Energy (DOC) as part of the Natlonmal Uranium Resource
Evaluation (NURE) program. Since 1974 the Grand Junction, Colorado Office of
O0E, through its contractors, has been conducting aerial surveys over varlous
portions of the United States. The data collected include observations in the

gamma-ray portion of the spectrum from which the contributions of potassium



(40K), uranium (from 2!48i) and thorium (from 208T1) to total activity can be
determined. Implicitly or explicitly, percentile estimation has always been
an important feature of the treatment of this data.

A traditional method of displaying the results of an aerlal survey is the
standard deviation map. An example using 2!YBi is shown in Fig. 1 (Ref. 1).
Flight lines are plotted on a map which can be used to overlay a 1:250,000
Mational Topographic Map Service (NTMS) quadrangle. Data are typically
analyzed on a within geologic type basis. Observations (referred to as
records) which are one, two or three standard deviations above or below the
mean are indicated by one, two or three points plotted above or below the
flight line. In some cases a lognormal distribution 1is assumed and
log-transformed data is used to produce maps or portions of maps.

Under the assumption of normality (or lognormality) standard deviation
maps have obvious percentile interpretations. This is lmportant because large
values of high percentiles may indicate a potentially favorable area. The
problem to be addressed here is that of determining the effect of 1ncorrect
distributional assumptions on percentile estimation. Examination of the data
indicates that there are many more distributional possibilities than the nor-
mal and lognormal, but for the purposes of this report it will be assumed that
they are the only alternatives. 1~ particular, two problems will be con-
sidered. They are a) determining the consequences of assuming a lognormal
distribution when the distribution 1is really normal and b) determining the
consequence . of assuming a normal distribution when the distribution is really
lognormal. Since the most common practice 1n NURE data presentation is to
simply compute the mean and standard deviation of the untransformed data
without doing any goodness-of-fit tests, the error assoclated with the second

problem is probably the most common.



COMPARISON OF TWO TYPES OF ERRORS

It can be shown that the aifference between a "correct" and an "incor-
rect" percentile estimate, expressed as a percentage of the correct estimate,
depends on the first two moments of the distribution (either normal or lognrr-
mal) only through the coefficlent of variation. The cases to be considered
are those where the coefficient nf variation is between 0.143 (expected value
equ2) tu 7.0 times the standard deviation) and 0.4 (expected value equal to
2.5 times the standard deviation). For values of the coef€icient of variation
below this region, the normal and lognormal are enough alike so that the
gifferences ere not of practical irterest. A value of the coefficient of
variation above this range implies that the corresponding rormal distribution
has a significant probability of negative values and since the data with which
we are dealing is strictly positive a normal should probably not be used.

We shall now consider the error incurred in percertile estimation by
assuming that data from a \truncateu) normal distribution are actually lognor-
mal. Consider a random sample of size n from X ~ N(u, 02). An unbiased
estimator of u+ Zu° , the 100c percentile, is X + Za(anS) where Z ie the
100q percentile of the standard normal distribution, S is the sguare root of

the bias corrected maximum likelihood estimator of 02

and a, is a bias
correction factor for the standard deviation (Ref. 2). The factor a,
approaches 1.0 as n lIncreases and since sample sizes are typically large
(usually greater than 50 and often greater than 1000) it will be assumed to be
equal to 1.0, Thus it is assumed that the "“correct" estimator for the 100a
percentile is X + ZS. If we mistakenly take the data tr be from a lognormal
distribution the 100 percentile is estimated by exp(Y + Z, Sy) where Y and

Sy are the mean and standard deviation of the lng-transformed date.



A Monte Carlo study was conductred to determine the magnitude of the dif-
ference between the two estimators. Ignoring any truncation and for fixed
sample size, this difference, expressed as a percentage of the correct esti-
mator depends on the percentile being estimated and th= coefficient of varia-
tion. Using Kinderman and Ramage's (Ref. 3) generator on a Los Alamos Sclen-
tific Laboratory CDC 7600 ccmputer, 900 samples for each of several sample
sizes (see Table 1) we.e taken from a standard normal distribution. Uniforms
required by this procedure were supplied by & multiplicative congruential ran-
dom number generator. The urderlying population mean of each sample was
transformed to provide eact ' the coefficients of veriation listed in Table
1. The sample sizes listed are the number of observatlons after truncating
any zero or negative values,

Percentile estimates usiny ovutn metnoas listed abuve were obtained for
each of the 900 samples. The means and standard deviations of each of these
estimates were computed over the 900 samples and the difference of the two
means was expressed as a percentage of the correct one. Percentage differ-
ences computed in this manner and based on a sample size of 2000 were used in
Fig. 2. Figure 2 shows the region where the error (i.e., the percentage dif-
ference between the average estimators) is greater than and less than 5 per-
cent. The estimated standard deviation of the percentage difference values is
.ess than 0.4 percent. This figure also shows the error lines associated with
treating a sample from a lognormal distribution as if it were normal.

Now, consider the errcr incurred in percentile estimation by assuming
that date from a lognormal distribution are normal. Let X

X X

1" 72 e Tn
be 1 random sample of size n from a loano-mal distribution having underlying

normal parameters u and o?. That is, it y = 1n X then Y ~ Nhi,oz). Let

Xq dencte the true 1lUUs percentile of the distribution. The maximum



likelihood estimator of X, 1is exp(Y + ZGSY) where Y and SY are the maximum
likelihood estimators of  and c}. In practice, within the setting of the
problem that motivated this investigation, SY is wusually taken to be the
square root of the bias corrected maximum likelihood estimate of 02. For
the following, it will be assumed that this is th~ case. 1If we nistakenly
assume the data are from a normal distribution, Xa will be estimated by X +
Z,S where X and S are the sample mean and standard deviation (assume a large
sample size).

A Monte Carlo study was conducted to determine the majnitude of the error
resulting from the incorrect assumntion of normality. The same sample sizes
and coefficients of variation were cunsigerea nere as in tne nrevious case.
Nine hundreo samples of each of the listed sizes were taken from a standarag
normal Adistribution. The underlying population mean and variance were trans-
formed so that the exponential of the sampled random variable would have the
desired coefficient of varlation.

Fer entiles were estimated for each of the 900 samples assumirg & norma.
distribution. Differences of each estimate from the tiue percentile,
expressed as 8 percentage of the true percentile, were computed. The mean and
standard deviation of these estimates and differences were computed over the
900 samples. The average percentage cifferences, based on sampluvs of size
2000, were used in Fig. 2. The estimated standard deviation of these average
differences 1s less than 0.1 percent. As ir the case of incorrectly assuming

lognormality, Fiqure 2 shows the renions where the error resulting from a

false assumption of nurmality is less than and greater than 5 percent.



CONCLUSIONS

Figure 2 shows that making an errcr by assuming the data are from a
normal population when they really are from a lognormal population causes
problem:; primarily when estimating tail percentiles. When estimatirg lower
tail percentiles, the error of failing to perform a log-transformation has
much more serious consequences than does the error of transforming. When

th ang soth

estimating percentiles that are between the 10 the consequence
of either type of error is not areat if the coefficient of variation is
reasonably small, sav less than U.<7. when estimating upper percentiles, the
error of making a log-transformation has much more serious consequences than
does the error of failing to transform. Tlable 2 provides details concerning
this fact. For example, an incorrect assumption cof normality results in a 16
percent error when estimating the 99th percentile of a distribution having
coefficient of variation equal to 0.417. Under the same conditions, the error
of incorrectly assuming that the distribution is lognormal results in a <6
-ercent error. A 66 percent error could be significant, as the fcllowing
example illustrates.

A mean 2148i count rate of 30 counts per second (cps) is typical of many
geologic formations in the Rawlins, Wyomirg, survey (Ref. 1). Assuming a
distribution is really normal with a mean of 30 and a coefficient of variacion

equal to 0.417, the 99th

percent!l~ is equal to 59 cps. Ir lognormality
were incorrectl/ assumed, a 66 percent error of 39 cps would result. In the
Rawlins survey, a 21%8i activity of 9.6 cps is equivalent to one part per
million (ppm) uranjum. Thus, an erior of 39 cps amounts to a 4.1 ppm uranium

erior.



Throughout this report it has been assumed that the aerial radiometric
data are either normally or lognormally distributed and that no other alterna-
tives exist. As mentioned earlier, examination of the data indicates that
other possibilities should be considered. Studies are now underway to eval-
vate several methods of estimating percentiles by comparing them over a broad

range of distributions.
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Fig. 1. An example of a standard deviation map prepared from aerial radiometric
survey data (Ref. 1).



COEFFICIENT OF VARIATION

0.45

0.40

0.35

025

>5%

<5%

020
I —— 5% ERROR BY USING LOG TRANSFORMATION
INCORRECTLY
0.15 __ 5% ERROR BY FAILING TO USE LOG -
TRANSFORMATION WHEN REQUIRED
C.IC | ] 1l 1 1 J ] ] 1
O 1C 20 30 40 50 60 70 80 S0 100
PERCENTILE
Fig. 2. Regions where incorrect choice of distribution leads to errors greater

than and less than 5 percent.



Table 1
Percentiles, Coefficients of Variation and

Sample 5izes Used in Simulations

Percentiles Coefficient of Variation Sample Size
0.05 L/¢.4 = U.417 20
0.10 1/2.6 = 0.285 50
0.20 1/2.8 = 0.357 100
0.30 1/3.0 = 0.333 200
C.40 1/3.3 = 0.303 300
0.50 1/3.6 = 0.278 500
0.60 174.0 = 0.250 1000
0.70 1/4.5 = 0.222 2000
0.80 1/5.0 = & 200
0.90 1/5.5 = 0.182
0.975 1/6.5 = 0.154
0.99 1/7.0 = 0.143
0.995
0.999

All combinations were considered.



Table 2

Comparison of Two Types of Errors when Estimating Upper Percentiles

95th Percentiie 99th Percentile 99.9th Percentile
Percentage Error by Percenitage Error by Percentage Error by
Coefficient of Incorrectly Assuming Incorrectly Assuming Incorrectly Assuming
Variation Normality Lognormality Normality Lognormality Normality Lognormality

.250 <5 8 8 16 15 28
.278 <5 11 9 22 17 38
.303 <5 14 11 28 19 49
L3233 <5 19 13 37 22 65
.357 <5 23 13 45 23 79
.385 <5 27 14 54 26 96

.47 6 33 16 66 28 117
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